

K2 blackpearl Best Practices

ADVICE AND INSTRUCTIONS FOR CHOOSING, DESIGNING, DEPLOYING AND MAINTAINING PROCESS-DRIVEN
APPLICATIONS WITH K2 BLACKPEARL

Originally Published November 14
th

, 2008
Updated October 26

th
, 2009

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 2

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 3

INTRODUCTION

In this whitepaper you will find practical guidance on best practices based on methods used by experienced

blackpearl designers. This content will be updated as additional best practices are identified.

CONTENTS

THE PARADIGM SHIFT..5

 Declarative Templates ..5

 Actions and Outcomes ..5

 SmartObjects ...5

K2 BLACKPEARL INSTALLATION, CONFIGURATION AND SECURITY BEST PRACTICES6

SMARTOBJECT DESIGN BEST PRACTICES ...8

 Business Object Centric ..11

 Pros ...11

 Cons ..11

 Process Centric (many process data fields) ..11

 Pros ...11

 Cons ..11

 InfoPath Centric (everything is in the InfoPath XML field) ...11

 Pros ...11

 Cons ..11

PROCESS SELECTION ...12

 Process Questions ..12

 People Questions ...12

 Infrastructure Questions ..12

PROCESS DESIGN BEST PRACTICES ..13

PROJECT STRUCTURE...14

 Naming K2 Items ..15

 Graphical Design Recommendations ...15

 Source Control ...16

 Process Data..17

 Process Data Fields ..17

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 4

 Activity Data Fields ...17

 XML Data Fields and InfoPath Forms ...18

 Data on Demand ..18

 Data Auditing..19

 Data Logging ..20

 Rules ...20

 Preceding vs. Start Rules (Make sure you know the order and what they're used for)20

 Line Rules (try to keep maintenance low) ...20

 Escalations (Nothing In Excess)...21

 Destination Rules (Know Thyself) ..21

 Succeeding Rules and Activity Scoping ..22

 Using GoTos ..22

 Process Versioning ...23

 Process Sizing..23

 Using Inter Process Communication Events ...23

PROCESS PROGRAMMING AND DEBUGGING ...26

 Handling Connections ...26

 Using Console.Writeline and Logging ...31

 Exception Handling ...31

PROJECT DEPLOYMENT ..36

CONCLUSION ...37

GLOSSARY ...37

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 5

THE PARADIGM SHIFT

If you have previous experience designing processes with K2.net 2003, be prepared to shift your thinking when

approaching process design with K2 blackpearl. There are a few key differences between the two versions that

are necessary to keep in mind when thinking about process design.

DECLARATIVE TEMPLATES

K2 blackpearl templates differ in a key way from K2.net 2003 templates, namely that they are declarative in

nature. This means that the blackpearl templates do not generate code as the K2.net 2003 templates do. Based

on Workflow Foundation (WF) schedules, the blackpearl templates use the WF schedules to perform the actions

specified in the wizard in a declarative rather than a compiled manner. Values specified in the wizards are

substituted for the placeholder values in the templates at runtime. The K2 Server uses the same templates that

are available in the K2 Designers to perform a just-in-time (JIT) compilation of the deployed process at runtime.

When you modify the code behind a WF schedule at design time, this modified code is persisted in the project file

(.kprx) and used to JIT the process at runtime. This mechanism offers a more dynamic runtime of blackpearl

processes compared to the K2.net 2003 fully-compiled mechanism, and will affect the way you design processes.

ACTIONS AND OUTCOMES

In K2 blackpearl, actions and outcomes allow process designers to separate what decisions, or Actions, users are

able to perform, from the results, or Outcomes, of those decisions. By default there is a one-to-one mapping of

Actions to Outcomes, but this can be modified using line rules. Separating Actions from Outcomes allows

processes to be modified without the need to modify the forms displayed to users during client events. This

separation also permits line rules and succeeding rules to be generated automatically, reducing the development

burden of keeping these in synch. This offers a powerful and dynamic way to design processes that is different

from K2.net 2003. Beyond not needing to hardcode potential actions in the form, separating Actions from

Outcomes also allows rights to be associated with Actions, so that at runtime these rights are queried and only

the Actions that a user is given permissions to perform are displayed on the form. This can be controlled using the

K2 Workspace Management Console as well as when worklist items are delegate to another user.

SMARTOBJECTS

SmartObjects and their associated SmartObject Services layer allow business data to flow into and back out of

processes. There are several SmartObject Services that are installed with K2 blackpearl, including:

 Microsoft SQL

 SQL Reporting Services

 SalesForce.com

 Active Directory

 Workflow

 SharePoint

Custom SmartObject Services can also be written to connect to any line of business (LOB) system to query and

update data from those systems through SmartObjects. SmartObjects not only allow data from LOB systems to

be incorporated into a process, but also allow data captured within a process to be more easily repurposed for

other processes and systems using the .NET Data Provider for K2 SmartObjects, an ADO.NET adapter that can

be used to query and update SmartObject data from any .NET client. Abstracting data from the process also

allows the process data load to be smaller, decreasing the SQL requirements for the main K2 Server tables and

increasing the performance and scalability of your processes.

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 6

K2 BLACKPEARL INSTALLATION, CONFIGURATION AND SECURITY BEST PRACTICES

Your first point of reference for installing K2 blackpearl should be the Getting Started Guide, which is one of the

three main content Help files that ships with K2 blackpearl. Also reference the K2 blackpearl Deployment

Planning Guide located on K2Underground for detailed information regarding supported topologies for installation

and planning.

There are a few other best practices to keep in mind regarding your installation, configuration and maintenance of

your K2 server.

 Always install the latest release or service pack. This helps ensure that you have the latest feature

and functionality enhancements as well as the latest bug fixes. The latest release is always available at

https://portal.k2.com/downloads/bp/Default.aspx. Pay particular attention to the release notes of the latest

release for information regarding the specific enhancements and fixes included in the release. Also take

note of the K2 Compatibility Matrix (http://help.k2.com/en/blackpearlmatrix.aspx), for the latest information

on K2 blackpearl compatibility with supporting software versions and platforms. Before applying any

service pack or installing the latest release, you should complete a full testing cycle with the update in

your QA/Test environment.

 Only install patches/hotfixes that need to be installed. If you are not experiencing a problem with your

K2 installation or processes currently running, you should not install any patches/hot fixes. They are only

meant to be installed by customers who are experiencing the specific issue that the patch/hotfix

addresses. Updates, which should be installed in a test environment first and then followed in a

production environment, are made available on a regular basis and include the latest patches/hotfixes in

a single installer.

 Only use physical Host (A) records in your domain. Using DNS Alias (CNAME) records may be

tempting because they help with scalability, Identification, Disaster Recovery and troubleshooting, but

there is a known Kerberos delegation problem between an Internet Explorer client and a Windows server

that resolves CNAME records to Host A records, causing authentication to fail (see Microsoft KB911149).

 Use Host (A) records like aliases: Use a Host (A) record that points to your active Web server.

The web server should be configured to use a host header that matches your service principle

name (SPN) Kerberos record. During failover and maintenance scenarios, you update your Host

(A) record to point to the IP address of your standby server. This precludes any Active Directory

changes and subsequent replication wait times, and has the added benefit of not invalidating

active Kerberos tickets.

 Note: If you install the hotfix for the DNA Alias (CNAME) issue or i f Microsoft makes other

changes to the way Windows clients authenticate with Windows servers, other best practices may

be developed for K2 servers using Kerberos authentication.

 Environment Library template naming. For more information about Environment Library naming

conventions and best practices, see the upcoming K2 blackpearl Professional book and The K2

blackpearl Environment Library whitepaper on K2underground.com

(http://k2underground.com/files/folders/technical_product_documents /entry27110.aspx).

 Setup Development and QA/Test environments. Establishing these environments at the same time as

designing your Production environment allows you to determine your hardware, licensing, testing and

troubleshooting plans much better than allowing these things to evolve on an as-needed basis. Your

QA/Test environment should resemble your Production environment as much as possible.

 Use MSBuild packages for deploying processes and SmartObjects to QA/Test and Production

(non-Dev) environments. This is typically required in enterprise environments due to the responsibilities

http://k2underground.com/files/folders/technical_product_documents/entry18541.aspx
http://k2underground.com/files/folders/technical_product_documents/entry18541.aspx
http://k2underground.com/
https://portal.k2workflow.com/downloads/bp/Default.aspx
http://help.k2.com/en/blackpearlmatrix.aspx
http://help.k2.com/en/blackpearlmatrix.aspx
http://support.microsoft.com/kb/911149
http://k2underground.com/files/folders/technical_product_documents/entry27110.aspx
http://k2underground.com/files/folders/technical_product_documents/entry27110.aspx

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 7

of keeping these environments running, but it is also a best practice to deploy using MSBuild to minimize

the overhead on these servers. For more information see KB000188 - How to use the Deploy Package

(http://help.k2.com/kb000188.aspx).

 Ensure other dependencies are in place for each environment. Make sure other dependencies, such

as custom service objects, Web forms and Web services are deployed and functioning as well. For error-

repairing processes in a production environment, have a workstation available with the K2 Designer for

Visual Studio installed on it to repair process errors.

 Assign server rights. As soon as you install your K2 server and verify that it is property configured, you

should lock it down by assigning rights to the server. Rights control who can deploy processes and

SmartObjects to the server, and who can see items such as the Report Designer, the Notifications and

Custom Event designer, and the Management Console in K2 Workspace. This is done using the options

in K2 Workspace and the Management Console and it is important to remember that in K2, access is

typically not restricted until permissions have been assigned. Once they are assigned, those not

specifically granted some level of permission will not have access to the administrative areas of K2

Workspace.

 Only assign K2 Server rights to accounts which require such rights.

 Admin – Account will have full administrative rights on the K2 server

 Export – Account has only rights to export (deploy) to the K2 Server

 Impersonate – Account has internal impersonation rights within the K2 work flow context, not to

be confused with Kerberos impersonation. Only assign this right for accounts that execute code

requiring impersonation rights within K2. Use of Kerberos impersonation over K2

impersonation is highly recommended as it is more secure, scalable and K2 does not act

as an authentication mechanism.

 Assign process rights to groups instead of users. Assigning rights to groups allows greater flexibility

and maintainability of your K2 server. It may be necessary to assign Start rights, for example, to individual

users, but try to avoid this when possible. Assigning rights to groups at the server level is not possible as

of this writing but is being investigated.

 Refrain from using K2 management APIs within process solutions as the use of these requires that the

identity of the user executing the code has administration rights. In particular this includes the

management APIs contained within the SourceCode.Workflow.Management,

SourceCode.ManagementAPI, SourceCode.SmartObjects.Services.Management, and

SourceCode.SmartObjects.Services.SmartBox.Management assemblies, but any assembly with

'Management' in the name typically requires permissions on the server that a typical user will not have.

Occasionally use of these APIs is required but it should be kept to a minimum.

 Refrain from using the K2 workflow API in a process, in particular to access the current process

instance. Trying to use the SourceCode.Workflow.Client API on the same process instance from which it

is being invoked can cause some stability issues due to the way the K2 ser ver handles process

execution. You should also refrain from using the API to work on different process instances unless there

are no other design options and you are absolutely certain that it will not interact with the process

instance from which you are making the API call.

 Always make a backup of all K2 databases. Upon completion of successful configuration, a base-level

backup of your databases, configuration files and any deployed custom service objects will aid in

recovery.

 For Kerberos troubleshooting, see the Getting Started Guide. There is a wealth of information in this

guide for troubleshooting potential problems with Kerberos. Also see the Security and Kerberos

Authentication with K2 Servers and K2 and Multi-Tier Environments whitepapers on K2underground.com

http://help.k2.com/kb000188.aspx
http://help.k2.com/kb000188.aspx
http://k2underground.com/files/folders/technical_product_documents/entry21001.aspx
http://k2underground.com/files/folders/technical_product_documents/entry21001.aspx
http://k2underground.com/media/p/32324.aspx

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 8

(http://k2underground.com/files/folders/technical_product_documents/entry21001.aspx) and consider the

following facts:

 User Ba se – Where will users be coming from? Within the network, over VPN, from the Internet

or a three? Will all these users have accounts in Active Directory or is another user store

required?

 Domains – How many domains are there? Where will the K2 server reside and which domains

will it interact with?

 Trusts – What trusts are existent between the identified domains? Are there any one-way trusts

which will block K2 Active Directory User Manager (ADUM) from carrying out LDAP queries?

 Forests – If there are there multiple forests involved, is there forest trust to allow Kerberos

tickets? Two-way forest trusts are usually required but it depends on where users and other

required resources are located. Contact K2 support if you do not have a two -way trust established

and your K2 server cannot authenticate some users.

 Functional Levels – What level do the domains and forests run at? Do you require any of the

features provided by a native Windows 2003 level?

SMARTOBJECT DESIGN BEST PRACTICES

Ideally in K2 blackpearl, the focus for process design is centered on a business object approach. All items in the

process are evaluated on how they interact with these business objects, in this case SmartObjects, and what the

data represented by these business objects means to the business itself. Where the process intersects the

business data should become evident during the process discovery phase of the project, and will represent the

critical results of processes activities and events.

http://k2underground.com/files/folders/technical_product_documents/entry21001.aspx

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 9

An individual process is broken down into its smallest business components. These components are then used as

the data source of the following components:

 All rules of the process

 User Interfaces

 Reports

The SmartObjects are then mapped to their appropriate backend systems via SmartObject Services. This allows

changes to the back-end system at any point in time without affecting the business application. When using the

SmartObject Services shipped with the product, no code needs to be written for read and write access to backend

systems. Custom SmartObject Services, often referred to as Service Objects, can also be written to talk to various

backend systems that do not have a corresponding SmartObject Service that ships with K2 blackpearl.

Note: The Active Directory service objects that ship with K2 blackpearl 0807 do not allow updates to Active

Directory. There is a service object available on K2 blackmarket that allows updates

(http://k2underground.com/k2/ProjectHome.aspx?ProjectID=3).

Using SmartObjects in this manner allows a process to store nothing but a reference to a SmartObject ID in the

process data fields, which abstracts data from the process and offloads work from the K2 work flow server. Using

this one data field, a SmartObject Reference can be made in the process definition. This SmartObject reference

becomes a re-useable object in the process definition which, in turn, is employed in line rules, start rules,

escalation rules, destinations and the like. As a benefit of abstracting data from the process, the process becomes

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 10

more lightweight in terms of instance data handled by the server and database storage needs as well as

permitting this business data to be more easily leveraged outside of the process .

Follow your company 's naming conventions when defining properties and methods in your service objects, and

provide understandable descriptions for service type properties and methods, since these are surfaced to users

that need to design SmartObjects that consume these methods and properties.

SmartObjects are developed once the underlying service types have been registered on the K2 server and an

instance of the service type created. This instance registration is accomplished through the K2 Workspace, and

can also be accomplished with the BrokerManagement.exe tool that allows you to supply a specific service

instance GUID for each custom service type.

You might choose to keep all SmartObjects within separate solutions based on the service types, but since

SmartObjects do not necessarily have to be bound to a specific service type, this approach may not be logical. A

single solution for all SmartObjects may be a better approach, as you can ensure consistency and avoid naming

conflicts, duplicated and overwritten SmartObjects, and to centralize the deployment of SmartObjects. Where this

is not possible, develop groups of SmartObjects, each within a single solution, using an approach that makes

sense to your business, but try to avoid having any single SmartObject contained within multiple groups. A hybrid

approach that may work in your environment is to develop all business -related, common SmartObjects in a single

solution, and have separate solutions for application-specific SmartObjects.

With the single solution approach, developers are able to work on individual SmartObjects at the same time,

although deployment requires them to „exclude‟ SmartObjects they are not currently designing.

Note: When deploying SmartObjects, K2 will automatically create a Category for the project name and sub-

categories for each of the folders in the project. By including all SmartObjects in a central solution, you can

ensure that SmartObjects are logically grouped, named and deployed to the K2 category system.

There are two more important things to remember when designing SmartObjects.

 K2 provides two mechanisms to retrieve data from SmartObjects: The.NET Data Provider for

SmartObjects (a standard ADO.NET data provider) and the SourceCode.SmartObject.Client API. Each

approach provides different benefits and requires a slightly different way of coding, but the important thing

to keep in mind is that because data can be exposed through SmartObjects to other non-K2 applications,

the SmartObject infrastructure may begin to play a larger role within your business than initially planned

for. However, keep the following point in mind as you create SmartObjects.

 Use SmartObjects as a data abstraction layer instead of your Enterprise Data Model. With the first

bullet here in mind, it may be tempting to use SmartObjects as your Enterprise Data Model to abstract

and hide legacy aspects of your business data, but that is not considered a best practice. SmartObjects

provide a way for processes and other applications to intelligently use data about your business for

business purposes, and does not supplant the need for a proper data model. In many cases,

SmartObjects are built upon the Enterprise Data Model so they fit into existing conventions yet still ease

K2 process development.

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 11

If the business object centric approach does not work for your business, or for every process that you design,

there are other approaches that can work equally well depending on the project requirements. Here are the three

main approaches and some Pros and Cons of each, starting with the business object centric approach:

BUSINESS OBJECT CENTRIC

PROS

 Scalable

 Reporting is easier

 Data is accessible outside of the process

CONS

 No automatic auditing

 InfoPath secondary data sources (based on SmartObject queries) are not validated, so if you need to

validate data you must create InfoPath rules to copy data from the secondary data source to the main

data source, or include your SmartObject queries in the main data source as a n option when adding them

to the InfoPath form.

PROCESS CENTRIC (MANY PROCESS DATA FIELDS)

PROS

 Enables granular auditing

CONS

 Potential scalability issues

 Difficulty in reporting

 Data locked up in process

INFOPATH CENTRIC (EVERYTHING IS IN THE INFOPATH XML FIELD)

PROS

 Eases InfoPath form development

CONS

 Potential scalability (many copies of the InfoPath XML)

 Only XML document level auditing

 Data level reporting is limited

 Split and merge (parallel plans) requires SmartObjects

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 12

PROCESS SELECTION

When looking at process automation, just about any process in a business can be automated. But the central

question is will it be worth the effort? Here are some guidelines for identifying processes that, through automation,

can deliver a good return on investment.

The more questions you answer "Yes" to across the following three categories, the more likely the process will

benefit your business when automated. This list is meant to get you thinking about your business and the types of

processes you have. It is not meant to be an exhaustive list of questions that you will have to find answers to once

you choose a process to automate. Look at the other sections in this whitepaper for the kind of information you

will need to gather once you start the process analysis and design phase.

PROCESS QUESTIONS

1. Does the process require reporting, auditing, compliance or version control?

2. Can the process be mapped? Or has the process been mapped and optimized already?

3. Is this process in operation today, electronically, in paper or otherwise?

4. If the business process is new to the business, have the necessary participants of the process been

informed and involved in the change management and business improvement exercise?

5. Do you have a paper forms and folders that are passed around?

6. Is this process time sensitive? Are there service level agreements? Do you need escalation points when

specific time limits are reached based on your SLAs?

7. Do you have a business process that requires more than one type of review or decision at the same

time?

8. Does the process share information with any other process?

9. Does the process run for a long time?

PEOPLE QUESTIONS

1. Will tasks need to be performed on behalf of another person?

2. Will the process involve the participation of the entire organization?

3. Are the process participants geographically dispersed?

4. Does the process need to escalate if someone fails to action it?

5. Do multiple people need to review and sign this off?

6. Are external parties involved in the process, for example regulatory agencies, customers and partners?

7. Is it important to notify users of process status?

8. Is overall process visibility important, for example for employees, managers, executives or auditors?

9. Do you need visibility into your process, like who is doing what and how lon g does tasks take to

complete?

INFRASTRUCTURE QUESTIONS

1. Does your company have the infrastructure to automate this process?

2. Do all individuals involved in the process have access to a computer?

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 13

3. Do you need to obtain information from other computer systems? Are these systems able to integrate

with other systems through APIs or Web services? Does the vendor of the software support and allow this

integration to be performed?

4. What, if any, are the licensing implications of this 3rd party application of allowing this integration? Has

this cost been accounted for in the total cost to automate?

5. Do you have disparate systems that need to participate within a business process?

6. Are these systems owned and hosted in-house or are they systems used and maintained by external

parties?

Process automation can bring many benefits to a business, and there are K2 features that can solve some of the

more difficult problems of non-automated process, like version control, tracking, compliance, auditing, multiple or

parallel approvals, escalations, delegation, surfacing business information from other systems, and increasing the

accountability and transparency of your business operations.

PROCESS DESIGN BEST PRACTICES

There are many approaches to designing K2 blackpearl processes, but many of them require what is referred to

as the Waterfall methodology. You start by creating a high level activity design and continue by adding more and

more detail into the process. Once the design is complete, the actual creation of the process follows.

The more detail that is placed in your design, the more complex the actual design environment will be. A simple

design could be done using the K2 Web Designer for SharePoint, where a more complex design should be done

using the K2 Designer for Visual Studio or the K2 Designer for Visio 2007.

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 14

PROJECT STRUCTURE

As mentioned in the SmartObjects section, you should separate your SmartObject projects from your Process

projects. The drawback of having multiple Processes or SmartObjects in the same project is that, by default, when

deploying the project to the K2 server, all processes and SmartObjects in the project are deployed. Should you

decide to exclude certain items from the deployment, they need to be excluded from the project build task (right

click the project and select „Exclude from build‟) before deploying.

Depending on the scope of your processes, separate projects should be created for different processes. The

deciding factor is usually whether different development teams will be working on the projects simultaneously. If

they will, separate projects are required for each team.

Generally, projects are subdivided into folders that cover specific processes. For example, suppose there are a

set of processes specific to HR, Finance and Operations. One would create separate folders for each of these

areas of the business and create the processes for that business area in the relevant sub-folder. The folder

structure is deployed as part of the process title to the workflow server. A well-organized structure can allow users

to find relevant processes more easily than other approaches.

Workflow projects will be deployed using the project name as the top-level folder, then any sub-folder and finally

the process name. For example, the following project structure is deployed to the server and results in processes

that reside in separate folders, as shown in the subsequent figure.

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 15

By grouping processes according to business unit or functional area, users can group and search work flows more

easily. The name of the workflow is typically presented to the user as <Folder Name>\<Process Name>, so be

descriptive but at the same time limit the number of combined characters used in project, folder and process

names so that it is easier for users to see the entire name.

NAMING K2 ITEMS

It is important to choose the right names for each K2 item, including your projects, folders, processes, activities

and events. Choose something descriptive but not too lengthy. Name your activities using nouns and your events

using verbs. For example, Manager Approval is a good activity name, and Approve Request is a good name for

the client event within the activity. All of these names are used at some point in the management of the process

as well as in the reporting of the process, so choosing good names is important and considered a best practice.

The use of Pascal Casing (i.e. PascalCasing) or Camel Casing (i.e. camelCasing) is recommended. Do not use

Hungarian notation to name K2 items. In earlier days most programmers liked it - having the data type as a prefix

for the variable name was very useful. This practice however, has fallen out of favor and is not recommended in

.NET coding standards. The use of meaningful, descriptive words to name variables is used to describe .NET

variables, and standards state that variables should use camel casing and methods and classes use Pascal

casing. Naming K2 items other than the custom code employed and data variables should probably follow Pascal

casing, but this is more of a preference. Using one of these methods is a best practice.

GRAPHICAL DESIGN RECOMMENDATIONS

In this section you will find information about process design elements instead of client event form design best

practices.

In large processes where many activities are defined, it becomes helpful to color code the activities based on the

task that is performed in that activity. The color legend can be defined for the particular process needs, but as an

example use something similar to the following.

 Blue = Client Event

 Yellow = IPC Event

 Grey = Web service or Integration call

 Red = Process End point

 Green = Process Start

It is recommended to display lines that result in parallel processing using a standard color, such as purple. In

addition, it can be beneficial to color the lines according to their rules. The following can serve as a general

guideline but depending on the actual process more colors can be added.

 Green = Approved

 Red = Declined

 Blue = Send for Rework

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 16

Note: These colors will not be seen by end users in the process View Flow.

Lastly, you should color events or activities that contain custom code using a reserved color, such as orange. This

helps developers understand which activities and events can be updated to newer templates, and which should

not. The „Update Design Templates‟ function will overwrite any customization applied to the default wizards with

the exception of the Default Server Events (code and WF). If the code behind an activity or event is modified

updating the design template removes those modifications and updates to the newer template. If customized

activities are in a different color, such as orange, developers can easily see which activities have been

customized and exclude these from updating.

Note: Processes developed with an earlier version of K2 blackpearl should always be updated to the latest

template versions at some point. Feature and functionality changes in the newer version may cause problems

when coupled with the older version of the template. It is considered a best practice to update the design

templates with each release if the process is to be redeployed.

Another related best practice is to avoid code customizations outside of a default server event.

In the following figure, activities that are performed by systems are colored black, activities performed by humans

are left in the default color, and activities with custom code are colored orange.

SOURCE CONTROL

With the release of K2 blackpearl 0807, using a source control system is much better. In previous releases, the

Workflow Foundation (WF) extender projects where temporarily written to the project path, so upon check-in the

extender projects were also checked in. They are not necessary to check-in, however, and will cause problems

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 17

because they are treated as temporary in nature by K2. In K2 blackpearl 0807, the extender projects are no

longer written to the project path but rather to the temporary folder, and are therefore not checked-in.

Developers who are working in K2 projects should be using the same local source control path as every other

developer. This prevents any problems with path length issues in the actual project files if the length starts

approaching the Windows path length limit, and it results in greater predictability. The common path should be

something short and understandable, such as "C:\K2Proj".

Note that two developers cannot work on the same file in a project at the same time, since changes are saved

into the source file during development. It is not recommended to merge changes to these files using source

control tools, since the internal file structure of the .kprx is both proprietary and complex. There is a very real

chance of file corruption should the files be manually edited. Although two developers will not be able to edit the

same process file (.kprx) or SmartObject file (.sodx) simultaneously, they will be able to develop on the same

project but in different files simultaneously.

PROCESS DATA

As described in the SmartObjects Design Best Practices section, storing data using SmartObjects is the best

practice, but in some cases you will want to store data in the process itself. In all cases it is important to

understand the differences between the various data fields available in K2 blackpearl.

Data fields allow a process to store metadata, either for the entire lifetime of a process or for the duration of a

single activity.

PROCESS DATA FIELDS

Process data fields exist for the entire li fetime and their scope is global to the process . Data fields should only

contain data that are tightly related to the particular business process or activity that they are defined for. Ideally

data fields will only contain pointers or ID values to the business entities and data that is stored in the application

databases.

The process should almost never contain data fields that will be displayed in the UI layer. The only exception to

this is when worklist filtering is required on certain fields outside of the standard K2 work flow fields. For example if

the worklist needs to be filtered by department, then it would make sense to have a Department data field in the

process and display this value in the custom worklist. In this case, consideration must be given to the size of a

user's worklist. As the worklist size and number of data fields increases, filtering reduces performance of the

worklist.

ACTIV ITY DA TA FIELDS

Activity data fields exist for the li fetime of the activity instance and have a scope of the activity instance. In K2.net

2003 activity data fields are duplicated for each destination user assigned to the activity. For this reason these

data fields have the tendency to easily grow to enormous proportions, consuming large amounts of server

memory, network bandwidth, and possibly also disk storage. Irresponsible use of activity data fields with large

amounts of data assigned to many users is strongly discouraged. In K2 blackpearl the default setting for activity

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 18

destination rules are to Plan just Once, and by default the data fields will not be duplicated in the same way.

However, it is still possible for a process developer to change the destination rule to plan per destination, and in

such cases data fields will be duplicated for each destination user.

XML DA TA FIELDS AND INFOPA TH FORMS

XML data fields are used to store much data about a process, such as the SharePoint integration data, work flow

history and the actual InfoPath forms for those types of processes. Be careful when using the InfoPath file

attachment control because this data is serialized and added to the InfoPath XML file, and then copied to the XML

data fields. A better practice is to use something like a SmartObject to upload a document to a MOSS library

rather than adding it directly to the InfoPath form and potentially causing database bloat from the increased XML

data size. This is particularly important on activities that are Plan per Destination as the InfoPath XML is copied

once per destination and slot, which can increase the load on the server significantly. It also causes the problem

of splitting and merging the XML data from the InfoPath form, which can be avoided using SmartObjects. Where

many users could potentially be uploading large files simultaneously, use performance measures to monitor the

server performance. If it becomes too much for the K2 server to handle you may need to write a custom Web

service to handle large, simultaneous file uploads.

DATA ON DEMAND

The use of On Demand setting on data fields, as shown in the following figure, is a very important feature that is

often neglected by developers. If On Demand is not enabled for data fields (by default it is enabled) it means that

every query to a K2 Worklist Item retrieves every piece of process data, which can put a strain on the SQL Server

Database in high-load environments where many K2 processes are simultaneously running. Good design

considers each data field individually to determine if On Demand is necessary. Certain data fields that are

accessed often might make the process perform faster if On Demand is switched off so that the data field

operates almost in a cached manner.

For more information about Data on Demand, see the K2.net 2003 article KB000102 - K2.net 2003 – Data on

Demand explained (http://help.k2.com/kb000102.aspx). The functionality is the same in K2 blackpearl.

http://help.k2.com/kb000102.aspx
http://help.k2.com/kb000102.aspx
http://help.k2.com/kb000102.aspx

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 19

DATA AUDITING

Auditing of data fields is an important feature which allows keeping track of all changes to data and XML fields

and who made the changes. This function, however, can create extra server load as well as growth in database

size because all changes are recorded and stored in the DB. For this reason the use of the Keep Audit setting on

data fields must be carefully considered on an individual basis for each data field. As a rule of thumb, only data

fields that are being updated by humans or external systems need to be audited. Data fields that are always

updated by the server itself will only need auditing if there is a requirement to see previous values but it will have

no use in determining who affected the change.

For more information about auditing, see KB000298 - K2 Auditing and Logging

(http://help.k2.com/kb000298.aspx).

Note: Data auditing only applies to data and XML fields and not to data contained within SmartObjects.

http://help.k2.com/kb000298.aspx
http://help.k2.com/kb000298.aspx

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 20

DATA LOGGING

All data is logged by default. This means that any change that occurs to the state of the process instance within

the transaction database (K2Server) is automatically logged to the reporting database (K2ServerLog). If you

uncheck the Keep Log option as shown in the figure above, the data from the field will not be copied to the

K2ServerLog database. This database is used primarily for reporting purposes.

If you need to keep large amounts of data in process data fields, it can be beneficial to turn off logging for this

data so that the overhead on the K2ServerLog database is kept to a minimum and data is not stored that may not

be relevant to reporting on the process. For example, if a file is passed into the process data field, there is no real

value in having that same file stored in the K2ServerLog database since it doesn't represent data commonly used

in reporting.

RULES

This section will outline some information detail and best practices about many different types of rules you can

modify in K2 blackpearl processes.

PRECEDING VS. STA RT RULES (MA KE SURE YOU KNOW THE ORDER A ND WHA T THEY'RE USED FOR)

A preceding rule is not a „wait until this is true‟ type of rule. Every time a specific line is followed, the preceding

rule is evaluated once, and if it returns true, then that activity will start. The only remaining question is when it will

start, and that then gets determined by the Start rule. Another way to think of this is that a Line Rule, when

evaluating to True, leads to an activity. The activity then executes the Preceding Rule, which is used to evaluate

data to determine if the activity should continue. If Yes, then the Start Rule fires which contains a time-based logic

to determine when the activity should begin. The process is dehydrated and another thread is responsible for

rehydrating the process at the appropriate time according to the Start Rule calculation, which takes into account

the configured Working Hours.

It is important to remember that a non-configured (empty) rule will always evaluate to True, so when you do not

have data-based or time-based requirements for starting an activity, the activity will automatically start when th e

line leading to the activity is complete.

The order of rules is:

 Line Rule

 Preceding Rule

 Start Rule

 Destination Rule

 {all events}

 Succeeding Rule

LINE RULES (TRY TO KEEP MA INTENA NCE LOW)

In K2 blackpearl the concept of Actions and Outcomes is used. All client events have at least one action and one

outcome. Each action represents a decision that the user can make at that point in the process. The outcome

represents the process route taken based on the action taken. In most cases there will be a one to one correlation

between actions and outcomes; however this does not always have to be the case. Outcomes can also be

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 21

combined with standard line rules, or in other words a line can be configured to execute when a user selected the

Approved action and the approval amount is greater than 5000. However, it is recommended that lines that

contained modified rules are kept to a minimum. This allows greater process maintainability because if the wizard

is re-executed and the lines regenerated, the modifications are lost. The option to automatically generate lines

based on actions is off by default once lines have been generated the first time, but this is something to be aware

of.

Be careful not to design looping line rules. Don‟t create a polling activity that loops back on itself every few

minutes to check if a certain condition on an external system has been met. Building this type of functionality into

a K2 process can add signi ficant load on the K2 server and databases. If you need to do something like this use

an asynchronous server event as described below.

ESCALA TIONS (NOTHING IN EXCESS)

Escalations are used to escalate a particular item if it has not been actioned by a user after a certain amount of

time, or at predefined date and time. Escalations should not be used to perform standard tasks that you want to

execute in the activity. For example, they should not be used to send standard emails one second after the

activity was started. Generally, if you have for than 50K to 60K records in the _Esc table of the K2Server

database, you may start running into scenarios where escalations will not fire as expected.

In K2 blackpearl there are three different levels of escalations.

 Process

 Activity

 Event

Note: Only activity escalations were available in K2.net 2003.

Activity escalations are the most common, but the other escalation levels can be used when track different

durations. For instance, use a Process escalation to track the duration of the entire process, an Activity escalation

to track the duration of a specific instance while ignoring individual users in a multi-slot instance, and an Event

escalation when tracking a specific event a tied to a slot that may have some user context when the plan per

destination activity plan is used.

DESTINA TION RULES (KNOW THY SELF)

With destination rules you may find it difficult to understand the implications of the advanced options when the

process gets to your main activity. If you need to do anything other than the default Plan just Once activity plan, or

you are using dynamic roles, you should read the whitepaper K2 blackpearl Roles and Advanced Destination

Rules (http://www.k2underground.com/files/folders/technical_product_documents/entry20948.aspx) carefully and

then fully-test your process in a Development or QA/Test environment with users and roles that represent your

actual process.

Abstracting your user management by using roles and, in some cases, SmartObject queries, allow you to manage

current and future instances of a process without redeploying it. Also be aware of functionality that is disabled

http://www.k2underground.com/files/folders/technical_product_documents/entry20948.aspx

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 22

when using the default Plan just Once plan, as detailed in the blog post Sending emails to Destination users

(http://k2underground.com/blogs/blackbelt/archive/2008/06/30/sending-emails-to-destination-user.aspx).

Be aware that if your destination users are not specified using a fully-qualified name (FQN), such as

DomainName\UserName, the default user manager security label is pre-pended to the name when the

destinations are resolved. The default security label is "K2" and corresponds to Active Directory (AD) users. An

example of a user in the DENALLIX domain is "K2:DENALLIX\Mike". Other user managers, such as the SQL user

manager, use different security labels. This means that if you assign tasks to SQL users using their unqualified

user names, the server prepends "K2" to the SQL user and assigns tasks to users that don't exist.

Also be aware that when using an InfoPath form in a client event, and you are using a Plan Per Destination -- All

at Once (parallel) plan or you have configured multiple slots, there is potential for data to be overwritten. To avoid

this you must either use SmartObjects to store each user's data or update the InfoPath client event code to only

update separate fields for each user.

SUCCEEDING RULES AND A CTIV ITY SCOPING

Based on the way in which you plan your activities, and especially if you do not use the Plan just Once default

plan, you will need to determine where to put server events and activity data manipulation events. For example, if

you have a client event in which users updates 10 data fields and you want to push that data immediately to a

SmartObject, you cannot put the SmartObject event inside the same activity. That data updated by the user isn't

available as part of the larger process until the activity completes, which happens after the succeeding rule is

applied. In this case, the server and data manipulation events should always be placed in a follow up activity.

In contrast, in a parallel activity plan (Plan Per Destination, All at Once), you may want to capture information

about actions that each destination user takes before the succeeding rule is applied. In this scenario, call the

appropriate SmartObject method (typically either Create or Update) immediately upon submit to send the

information to a SmartObject. This gives you the flexibility to query all activity data because it is abstracted from

the process, and data about each destination user is kept is a separate record for easier merging later on, such

as in a server event in a subsequent activity.

Note: If you have more slots than destination users, your succeeding rule will never fire and your activity will

appear "stuck" because it will not advance to the next activity. Ensure that you have at least as many destination

users as you have slots.

USING GOTOS

Using GoTos, including using the GoToActivity API method, in a process should be used with care as it will expire

all currently active Activity instances within the process instance and jump the execution of the process to the
specified target activity. This can lead to lost worklist items, premature process completion and orphaned IPC
child processes, as well as to the loss of reporting visibility. This can also affect the View Flow report, where lines

will not appear as Red or Green since they were not followed. Sometimes GoTos are necessary but other times a
spider workflow is a better approach. For more information about designing spider workflows, see Workflow
Design - Spider Workflow (http://k2underground.com/blogs/adriaanandolaf/archive/2007/06/27/workflow-design-

spider-work flow.aspx).

http://k2underground.com/blogs/blackbelt/archive/2008/06/30/sending-emails-to-destination-user.aspx
http://k2underground.com/blogs/adriaanandolaf/archive/2007/06/27/workflow-design-spider-workflow.aspx
http://k2underground.com/blogs/adriaanandolaf/archive/2007/06/27/workflow-design-spider-workflow.aspx

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 23

PROCESS VERSIONING

While the K2 server maintains versions of your processes automatically, it can prove useful to place a version

number in your start activity or process data field, as this can prove useful when looking at the global worklist or

View Flow data fields, and can help you easily identify the version of the p rocess a running instance is using.

PROCESS SIZING

It is recommended to limit the number of activities in a process as much as possible. If a process has many

(generally more than 20) activities, it is usually a good indication that the process can benefit from a business

process reengineering (BPR) exercise, or that the process should be subdivided into smaller processes with IPC

calls between the sub-processes. Large processes not only complicate development and maintenance but also

reduce re-usability and insight into the process flow. However, be careful to understand how splitting a process

into multiple pieces may affect reporting data. It is easier to generate a report on a single process, even when it is

very large. You will have to weigh the benefits of reporting to the business and the benefits of manageability when

making this decision.

Also pay attention to the actual size of your process, mainly the process (.kprx) file. Especially if you are using a

source control solution, when this project file grows beyond about 20MB in size, it may become unwieldy and

benefit from being split into multiple parts. This number should not be thought of as a rule but rather a guideline.

Some processes that are over 10MB in size may also benefit.

You should choose a process architecture that is not overly complex. A process containing hundreds of data-

intense activities, such as InfoPath and SharePoint, or that have large data or file attachments, is not

recommended. Abstracting data and logic into external assemblies, external referenced data, service objects and

SmartObjects, and IPCs is a better approach that makes it easier and more predictable to design, deploy and

maintain.

USING INTER PROCESS COMMUNICA TION EV ENTS

In the case of an IPC event call, if you want the parent process to wait for the child IPC, then you must call the

IPC „synchronously‟, in which case the parent will wait until the child completes and optionally you can pass back

data fields from the child to the parent.

The only other mechanism (other than IPC) for making a process „wait‟ until certain external conditions are met is

an asynchronous server event. In that scenario you could call an external system, such as BizTalk, and pass in

the serial number and tell the server event to wait. When the external system is done, it can make a call back to

K2, re-instantiate that event instance using the serial number, and finish the event (optionally passing in data) so

that the process continues.

How does an asynchronous server event differ from the normal synchronous code event? When the workflow

engine encounters a synchronous server event it executes the event and then continues the work flow. In an

asynchronous event, the workflow engine executes the event and then stops. When you first drag a server code

event onto the workflow design canvas, by default it is synchronous. A server code event can be changed from

synchronous to asynchronous by adding one line of code to the event:

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 24

K2.Synchronous = false;

To notify the workflow the event is complete a key piece of information must be made available to the external

system: the serial number of the activity containing the asynchronous server event. Every activity (whether you

use it or not) has a serial number that uniquely identifies it. A serial number is similar to the correlation ID in used

in message queuing. This serial number allows you to use the K2 API to open the correct server item and

complete the event using the Finish method of ServerItem:

public static void CompleteServerItem(string K2Server, string serialNumber)

{

 if (string.IsNullOrEmpty(serialNumber)) return;

 SourceCode.Workflow.Client.Connection K2Connection = null;

 try

 {

 SourceCode.Workflow.Client.ConnectionSetup K2Setup = new ConnectionSetup();

 K2Setup.ConnectionString = K2Server;

 K2Connection = new Connection();

 K2Connection.Open();

 ServerItem serverItem = K2Connection.OpenServerItem(serialNumber);

 if (serverItem != null) serverItem.Finish();

 }

 catch(Exception ex)

 {

 myLogException(ex);

 }

 finally

 {

 if (K2Connection != null)

 {

 try

 {

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 25

 K2Connection.Close();

 K2Connection.Dispose();

 }

 catch(Exception ex)

 {

 myLogException(ex);

 }

 finally

 {

 K2Connection.Close();

 K2Connection.Dispose();

 }

 }

}

}

You can also use the ServerItem class to set process and activity level fields to transfer information back into the

work flow. This code could be invoked from a .NET assembly, a web service, or whatever approach best matches

your situation; just add a reference to the SourceCode.Workflow.Client assembly. The identity used to connect

to the K2 Server needs be assigned the Server Event right for the process in the Management Console.

A common design scenario for work flows is the need to be able to cancel asynchronous IPC processes at any

time in response to some action in the main work flow. This scenario typically occurs when the originator decides

to cancel a request that has started several independent sub processes to perform part of the work.

An asynchronous server code event and some other components can be used to implement a possible solution in

this scenario. The idea is that whenever an asynchronous IPC event is started, it writes information about itself to

a SmartObject. When the sub process ends, it removes the entry. If the main process needs to end, it scans the

SmartObject for all the currently running sub processes that belongs to it and tells them to finish. The

asynchronous server event is used in the sub-process to wait for the signal from the main process.

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 26

PROCESS PROGRAMMING AND DEBUGGING

There are many personal preferences to how developers write code, and many development teams follow

company or divisional standards that make their projects run smoother. This section is meant to provide some

general guidance and K2-specific methods for programming and debugging, and may or may not represent best

practices within your organization.

HANDLING CONNECTIONS

Here are some pointers when using the Connection object. This object is part of the base API from which each

API that makes a connection to the server inherits.

There are three scenarios in which you can connect to the server from the API.

Scenario 1: Opening and closing multiple connections

This is the most expensive way of using connections and causes the most overhead. This is because after each

Open method on the connection object, the call is authenticated on the server. This scenario is typically used in a

stateless environment where user context does not exist between method cal ls, for example in Web applications

that do not store session state.

public static void MultipleConnections()

{

 SmartObjectManagementServer smoManagementServer = new
SmartObjectManagementServer();

 SmartObjectClientServer smoClientServer = new SmartObjectClientServer();

 string connectionString =
"Integrated=True;IsPrimaryLogin=True;Authenticate=True;EncryptedPassword=False;Host
=blackpearl;Port=5555";

 SCConnectionStringBuilder connectionBuilder = new
SCConnectionStringBuilder(connectionString);

 try

 {

 // Get SmartObject List

 smoManagementServer.CreateConnection(connectionBuilder.ToString());

 smoManagementServer.Connection.Open(connectionBuilder.ToString());

 SmartObjectExplorersmoExplorer = smoManagementServer.

 GetSmartObjects(SmartObjectInfoType.System);

 }

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 27

 catch

 {

 Console.WriteLine(ex.Message);

 }

 finally

 {

 smoManagementServer.Connection.Close();

 }

 try

 {

 // Get SmartObject

 if (smoClientServer.Connection == null)

 smoClientServer.CreateConnection();

 smoClientServer.Connection.Open(connectionBuilder.ToString());

 SmartObject smo = smoClientServer.GetSmartObject

 (smoExplorer.SmartObjects["UMUser"].Guid);

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

 finally

 {

 smoClientServer.Connection.Close();

 }

 try

 {

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 28

 // Get SmartObject Data

 if (smoClientServer.Connection == null)

 smoClientServer.CreateConnection();

 smo.MethodToExecute = "Get_Users";

 smo.ListMethods[smo.MethodToExecute].Parameters["Label_Name"].Value = "K2";

 smoClientServer.Connection.Open(connectionBuilder.ToString());

 SmartObjectListuserList = smoClientServer.ExecuteList(smo);

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

 finally

 {

 smoClientServer.Connection.Close();

 }

}

Scenario2: One connection performing many operations.

This is a much more efficient way of using connections. You can share the connection object between APIs

thereby making it easier to manage the connection overhead. This method should not be used in environments

where network connections periodically fail or are reset.

public static void OneConnection()

{

 SmartObjectManagementServer smoManagementServer = new
SmartObjectManagementServer();

 SmartObjectClientServer smoClientServer = new SmartObjectClientServer();

 string connectionString =
"Integrated=True;IsPrimaryLogin=True;Authenticate=True;EncryptedPassword=False;Host
=blackpearl;Port=5555";

 SCConnectionStringBuilder connectionBuilder = new
SCConnectionStringBuilder(connectionString);

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 29

 smoManagementServer.CreateConnection();

 smoClientServer.Connection = smoManagementServer.Connection;

 smoManagementServer.Connection.Open(connectionBuilder.ToString());

 SmartObjectExplorer smoExplorer =
smoManagementServer.GetSmartObjects(SmartObjectInfoType.System);

 SmartObject smo =
smoClientServer.GetSmartObject(smoExplorer.SmartObjects["UMUser"].Guid);

 smo.MethodToExecute = "Get_Users";

 smo.ListMethods[smo.MethodToExecute].Parameters["Label_Name"].Value = "K2";

 SmartObjectList userList = smoClientServer.ExecuteList(smo);

 smoManagementServer.Connection.Close();

}

Scenario3: Using sessions.

This is the most efficient way of handling connections, providing you have session state.

If you're calling client has state and can manage sessions, this is the way to use it with the connection object. The

session connection timeout on the server can be set but keep in mind that this setting applies to the entire server,

which means all servers hosted on that server. The default time is 20 minutes. If a session times out and you

make an API call without Authenticating (Authenticate=true), you will get an exception.

public static void UsingSessions()

{

 SmartObjectManagementServer smoManagementServer = new
SmartObjectManagementServer();

 SmartObjectClientServer smoClientServer = new SmartObjectClientServer();

 string connectionString =
"Integrated=True;IsPrimaryLogin=True;Authenticate=True;EncryptedPassword=False;Host
=blackpearl;Port=5555";

 SCConnectionStringBuilder connectionBuilder = new
SCConnectionStringBuilder(connectionString);

 smoManagementServer.CreateConnection();

 smoClientServer.Connection = smoManagementServer.Connection;

 smoManagementServer.Connection.Open(_connBuilder.ToString());

 String sessionID = smoManagementServer.Connection.GetResumableSessionCookie();

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 30

 SmartObjectExplorer smoExplorer =
smoManagementServer.GetSmartObjects(SmartObjectInfoType.System);

 smoManagementServer.Connection.Close();

 // Time elapses...

 SmartObject smo = null;

 try

 {

 connectionBuilder.Authenticate = false;

 smoClientServer.Connection.Open(connectionBuilder.ToString());

 smoClientServer.Connection.ResumeSession(sessionID);

 smo =
smoClientServer.GetSmartObject(smoExplorer.SmartObjects["UMUser"].Guid);

 smoClientServer.Connection.Close();

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

 // More time elapses...

 if (smo != null)

 {

 SmartObjectListuserList;

 try

 {

 smo.MethodToExecute = "Get_Users";

 smo.ListMethods[smo.MethodToExecute].Parameters["Label_Name"].Value =
"K2";

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 31

 smoClientServer.Connection.Open(connectionBuilder.ToString());

 userList = smoClientServer.ExecuteList(smo);

 smoClientServer.Connection.EndSession(sessionID);

 smoClientServer.Connection.Close();

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

 }

}

USING CONSOLE.WRITELINE AND LOGGING

Although K2 blackpearl offers standard debugging support allowing developers to attach a Visual Studio

debugger to a running K2 server and step through code, one can also use the simple WriteLine approach to

output debugging statements to a K2 server running in console mode.

Console.WriteLine(“your message here”);

As a best practice, however, developers are encouraged to use the built-in logging framework to output messages

to the selected logging configuration. This is a more robust approach and allows messages to appear in a number

of different targets, such as the Windows Event Log, the K2 log file, the console and even a message queue,

depending on the configuration of the logging framework.

string loggedInfoSource = string.Format("{0}/{1}",

K2.ProcessInstance.Process.Name, K2.Event.Name);

K2.ProcessInstance.Logger.LogInfoMessage(loggedInfoSource , "Your message here");

Illustrated here is a fraction of the functionality provided by the logging framework. For more information see

KB000298 - K2 Auditing and Logging (http://help.k2.com/kb000298.aspx).

EXCEPTION HANDLING

Exception handling is the occurrence of a condition that changes the normal flow of execution. Developers know

what an exception is in code, but you should also be aware of business flow exceptions and plan for them

differently. In a business flow exception, the process designer should take into account things that may change

http://help.k2.com/kb000298.aspx
http://help.k2.com/kb000298.aspx

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 32

the normal flow of the business process. Handling these exceptions within the process design allows a process

administrator to receive assigned a task and take action in order to correct the business flow exception. Code

exceptions are different, and what follows in this section is related to these types of exceptions.

Making use of a good logging class, whether using the one that ships with K2 blackpearl or a different one, which

can be configured to log errors, warnings or traces is good practice and ensures that all exceptions are handled

and displayed in the same manner. If you configure the class to log errors, it should only log errors, but if you

configure to log traces, it should record all information such as errors, warnings and traces. Your log class should

be written in such a way that you can easily change it to log to the Windows Event Log, a SQL Server, a log file,

or email to administrator without any change in any other part of the application. Use the log class extensively

throughout the code to record errors, warning and even trace messages that can help you troubleshoot a

problem.

K2, by default and without explicit exception handling, bubbles all process exceptions up to a process exception

handler and puts the process in an error state. The error messages in this case are written to the log targets

based on the logging configuration. Depending on each process, further exception handling can be defined on the

process, activity or event level. In most cases it will not be necessary to include exception handling on the activity

or event levels unless specific actions are required and you do not want exceptions at these levels to bubble up to

the process level.

Server events should contain proper error handling in the code to try and catch expected exception conditions (for

instance during Web service calls) and to log these exceptions properly.

The following example is bad exception handling in .NET code and should be avoided:

catch (Exception e)

{

myLogExceptionMethod(e);

throw new exception(“some exception message”);

}

The following is an example that is better exception handling:

catch (Exception e)

{

myLogExceptionMethod(e);

throw new Exception("Error in Module X:", e);

}

This better approach ensures that the full stack trace is maintained, whereas the first code block breaks the stack

trace. The “some exception message” would appear at the top of the stack trace in the first case.

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 33

If a monitoring solution such as Microsoft Operations Manager (MOM) is in use, the error handling can be

incorporated into the monitoring solution. Alternatively error notifications can be sent to K2 system administrators

for action.

The most important point is to use a consistent manner for error reporting in all processes.

K2 blackpearl provides exception handling blocks at the multiple levels, similar to the different escalation levels --

Event, Activity and Process.

You can access the exception block by clicking on the icon at the top of the K2 Designer for Visual Studio canvas

()

This will open up the exception dialog. You can get to the code by clicking on 'View Code' button.

After the View Code button is clicked the XOML is displayed. Right click on the XOML canvas and select "View

Code". In the code expand the Properties_ExecuteCode method.

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 34

The K2 context object exposed here provides details around the error and native workfl ow entity object access

that is limited to ProcessInstance. In many situations it can be useful to get object level access to entities like

ActivityInstance and ServerEvent, and this can be accomplished by casting the K2.ContextObject to the

appropriate class. The appropriate class can be determined by checking the K2.ContextType properties.

Below is an example of getting access to the ServerEvent and ClienEvent context objects for additional exception

processing. In this case the exception details are added to data fields for easier tracking and reporting:

private void Properties_ExecuteCode(object sender, EventArgs e)

{

 K2.AddToErrorLog = K2.Configuration.IsErrorLog;

 K2.AddToServerLog = K2.Configuration.IsServerLog;

 string ErrorType = K2.ContextType.ToString();

 string EventName = "";

 string ActivityName = "";

 Exception ex = (Exception)K2.ExceptionObject;

 string ErrorMessage = ex.InnerException.Message;

 bool Handled = false;

 switch (K2.ContextType)

 {

 case (SourceCode.KO.ContextType.ServerEvent):

 SourceCode.KO.ServerEventContext MyServerEvent =

 (SourceCode.KO.ServerEventContext)K2.ContextObject;

 ActivityName =

 MyServerEvent.ActivityInstanceDestination.Activity.Name;

 EventName = MyServerEvent.Event.Name;

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 35

 try

 {

 MyServerEvent.ActivityInstanceDestination.ActivityInstance.

 DataFields["ErrorMessage"].Value = ErrorMessage;

 MyServerEvent.ProcessInstance.DataFields["Last Error Message"].

 Value = "Activity: " + ActivityName + " Error: " + ErrorMessage;

 MyServerEvent.ExpireActivity(ActivityName);

 Handled = true;

 }

 catch (Exception exception)

 {

 Console.WriteLine("Exception Rule Error: " + exception.Message);

 }

 break;

 case (SourceCode.KO.ContextType.ClientEvent):

 SourceCode.KO.ClientEventContext MyClientEvent =

 (SourceCode.KO.ClientEventContext)K2.ContextObject;

 ActivityName =

 MyClientEvent.ActivityInstanceDestination.Activity.Name;

 EventName = MyClientEvent.Event.Name;

 try

 {

 MyClientEvent.ActivityInstanceDestination.ActivityInstance.

 DataFields["ErrorMessage"].Value = ex.Message;

 Handled = true;

 }

 catch (Exception exception)

 {

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 36

 Console.WriteLine("Exception Rule Error: " + exception.Message);

 }

 break;

 }

 // if this wasn't handled explicitly then handle the normal K2 way

 if (!Handled)

 {

 K2.AddToErrorLog = true;

 K2.AddToServerLog = true;

 }

}

PROJECT DEPLOYMENT

As mentioned in the K2 blackpearl Installation, Configuration and Security Best Practices section, you should use

MSBuild tasks to deploy to QA/Test and Production environments. This is not only a best practice, it also ensures

that updated references are copied or added to the global assembly cache (GAC) upon successful builds, and it

does not require developers to have access to these environments.

The deploy package can be created and sent to the server team who can then deploy the package to the relevant

environment. The K2 deployment package will only deploy processes and SmartObjects, not, for example, user

interfaces, reports, service objects, custom environment library fields, roles, working hour zones, and

permissions. The developer will need to create a separate deployment method for these components. Refer to the

following K2 KB article on creating deployment packages: http://help.k2.com/kb000188.aspx

Note: At design time, SmartObjects are associated to Service Objects using the service instance GUID. If the

Service Instance GUID differs between environments, deployment errors will occur. It is therefore recommended

to set the Service Instance GUID to the same value for every environment when using the Broker Management

tool to configure service instances. There are also tools available, such as the Service Object GUID Updater

(http://www.k2underground.com/k2/ProjectHome.aspx?ProjectID=25), on the K2 blackmarket on

k2underground.com to synchronize Service Instance GUIDs as well as a Knowledge Base article -- KB000250 -

SmartObject GUID Synchronization (http://help.k2.com/articles/kb000250.aspx). The Amazing SmartObject tool is

also made available with K2 blackpearl 0807 and later releases, and should be used to test SmartObjects. It is

called the SmartObject Service Tester and is located in the ServiceBroker folder.

http://help.k2.com/kb000188.aspx

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 37

CONCLUSION

There are many practices outlined in this whitepaper that will assist you in identifying, designing, deploying and

maintaining your processes. This whitepaper may be updated in the future with more best practices. If you have a

best practice you would like to share, please post to the K2 blackpearl forums on K2underground.com and

mention that you would like it to be included in this whitepaper.

GLOSSARY

Term Definition

Action A specific choice or response made by a user in the course of a client event.

Activity Step in a K2 blackpearl Process, containing one or more Events

AD Active Directory

API Application Programming Interface

Association A relationship between two SmartObjects. This is achieved by mapping fields

together. For example with an object „Employee‟ and an object „Leave

Application‟, we could relate the two objects by mapping the „Employee‟ object‟s

„Employee Number‟ field with a field of the same name on the „Leave

Application‟ object.

BDC See Business Data Catalog

BPA Business Process Automation

BPM Business Process Management

Business Data Catalog A catalog of business applications that are of interest to a SharePoint 2007

User. The K2 BDC for SharePoint 2007 enables the data contained within a K2

SmartObject to be available via a SharePoint Site Web Part.

Business Process Sequence of tasks done in a predefined order in the real world.

Business Rule A rule, applicable to a work flow, stating behavior in a given set of circumstances

Data Field Process data fields and activity data fields facilitate the collection,

communication and management of information required in the process

Data Field – Hidden Prevents the Data Field from being shown in the Object Browser.

Data Field – On If selected, this ensures that K2 Server only loads Data Fields when and if

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 38

Demand required either by reading a value or setting a value in a data field.

Data Field – Keep Audit This option enables you to keep track of the changes made during the execution

of the workflow process and is selected by default.

Data Field – Keep Log Keeps a log of the data field

DoD Data on Demand – see Data Field – On Demand

EAI Enterprise Application Integration

Event Smallest action in a K2 blackpearl Process, executed serially within an Activity

Event Bus System events notification service

IPC Inter-Process Communication

K2 blackpearl Server Server side components for managing and operational requirements of the K2

blackpearl environment.

K2 Designer for

SharePoint

Microsoft SharePoint design environment for K2 processes

K2 Designer for Visio K2 blackpearl integration with Microsoft Visio 2007.

K2 Designer for Visual

Studio

The K2 blackpearl design environment which is fully immersed in the Visual

Studio development environment.

K2 Configuration

Manager

Environment configuration application.

K2 Management

Console

Security and permissions are maintained in the K2 Management Console which

surfaces in K2 Workspace.

K2 MOSS Components Components enabling SharePoint integration.

K2 WorkList List of work items assigned to some specific user or group.

K2 Workspace Browser based interface that enables users to manage their work list, view and

build reports that can be used to manage business processes.

K2 WSS Components Components enabling WSS integration.

Line In K2 blackpearl, lines contain rules (business rules) and link Activities together

Line Rule An optional piece of logic that determines the route followed within the process

as it executes.

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 39

Method An action provided by a SmartObject. For example „Load‟ or „Calculate Tax‟.

This links back to a method provided by a ServiceObject.

MOSS Microsoft Office SharePoint Server

MSDTC Microsoft Data Transaction Coordinator

Outcome The Outcome requires a rule or logic that allows the rule to resolve to true

(succeed). The rule defines the conditions required for the rule to succeed.

PM Project Manager

Process A single design of a Workflow in K2 blackpearl (interchangeable with the word

“Workflow”)

Property An item of data provided by a SmartObject. For example „Name‟ or „Vehicle

Colour‟. This may link back to a property provided by a ServiceObject, or it may

be a piece of data stored in SmartBox

ServiceObject An object provided by the K2 blackpearl SmartBroker that provides one or more

back-end services. These could include access to data systems, standard

calculation or processing systems or code, or web services

Service-oriented

Architecture

A service-oriented architecture is a collection of services that communicate with

each other. The services are self-contained and do not depend on the context or

state of the other service. They work within distributed systems architecture.

SmartBox An Out-Of-The-Box service supplied with K2 blackpearl server, used for storing

SmartObject data that has no backing store.

SmartBroker A process hosted by the K2 blackpearl HostServer that provides ServiceObject

and SmartObject capabilities and organisation.

SmO SmartObject (see SmartObject)

SmartObject An object provided by the K2 blackpearl SmartBroker that provides a business

centric view of workflow or back-end data. For example a SmartObject called

„Employee‟ might pull data from AD, the company payroll system and a

database of employees, to provide an overall picture of each employee.

SO ServiceObject (see ServiceObject)

SOA See Service-oriented Architecture

SPS SharePoint Portal Server

Task List See K2 WorkList

WHITEPAPER: K2 BLACKPEARL BEST PRACTICES

 PAGE 40

Topology The arrangement of networked elements and the interconnections between

them.

UM User Manager

ViewFlow A diagram within the K2 Workspace (but could be embeddable elsewhere) that

graphically shows the status of a given process instance.

Workflow A single design of a process with sequential steps in K2 (interchangeable with

the word “Process”)

WCF Windows Communication Foundation

WF Windows Workflow Foundation

WSS Windows SharePoint Services

